Bí quyết giải Toán hình học không gian

Đánh giá của bạn Bí quyết giải Toán hình học không gian bao gồm các dạng toán và phương pháp giải bài toán hình học không gian. Hi vọng qua các bí quyết giải toán này, các bạn học sinh khi làm toán sẽ giải bài tập nhanh hơn, tiếp kiệm thời gian bài thi…
Đánh giá của bạn
Đánh giá của bạn

Bí quyết giải Toán hình học không gian bao gồm các dạng toán và phương pháp giải bài toán hình học không gian. Hi vọng qua các bí quyết giải toán này, các bạn học sinh khi làm toán sẽ giải bài tập nhanh hơn, tiếp kiệm thời gian bài thi hơn. Đây sẽ là tài liệu hữu ích dành cho các bạn tham khảo nhằm học tốt môn Toán THPT, ôn thi THPT Quốc gia môn Toán hiệu quả.

Bí quyết giải Toán hình học không gian - Toán hình học không gian
Bí quyết giải Toán hình học không gian

Bí quyết giải Toán hình học không gian

Hình học không gian là môn học khó đối với nhiều học sinh, nhưng nếu biết đưa ra phương pháp giải cho từng dạng toán, kiên trì hướng dẫn học sinh thực hiện theo đúng phương pháp đó, thì việc học và giải toán hình học không gian sẽ đỡ khó hơn rất nhiều và mỗi học sinh đều có thể học và giải những đề thi đại học phần hình học không gian một cách nhẹ nhàng.

BÀI TOÁN 1: Tìm giao tuyến của hai mặt phẳng.

* Phương pháp:

Cách 1: Tìm 2 điểm chung của 2 mặt phẳng đó.

  • Điểm chung thứ nhất thường dễ thấy.
  • Điểm chung thứ hai là giao điểm của 2 đường thẳng còn lại, không qua điểm chung thứ nhất.

Cách 2: Nếu trong 2 mặt phẳng có chứa 2 đường thẳng // thì chỉ cần tìm 1 điểm chung, khi đó giao tuyến sẽ đi qua điểm chung và // với 2 đường thẳng này

BÀI TOÁN 2: Tìm giao điểm của đường thẳng a và mặt phẳng (P)

* Phương pháp:

– Ta tìm giao điểm của a với một đường thẳng b nào đó nằm trong (P).

– Khi không thấy đường thẳng b, ta thực hiện theo các bước sau:

1. Tìm một mp (Q) chứa a.

2. Tìm giao tuyến b của (P) và (Q).

3. Gọi: A = a ∩ b thì: A = a ∩ (P).

BÀI TOÁN 3: Chứng minh 3 điểm thẳng hàng.

* Phương pháp:

Để chứng minh 3 điểm hay nhiều hơn 3 điểm thẳng hàng ta chứng minh các điểm ấy thuộc 2 mặt phẳng phân biệt.

BÀI TOÁN 4: Chứng minh 3 đường thẳng a, b, c đồng quy.

* Phương pháp:

– Cách 1: Ta chứng minh giao điểm của 2 đường thẳng này là điểm chung của 2 mp mà giao tuyến là đường thẳng thứ ba.

Tìm A = a ∩ b.

Tìm 2 mp (P), (Q), chứa A mà (P) ∩ (Q) = c.

– Cách 2: Ta chứng minh: a, b, c không đồng phẳng và cắt nhau từng đôi một.

BÀI TOÁN 5: Tìm tập hợp giao điểm M của 2 đường thẳng di động a, b.

* Phương pháp:

– Tìm mp (P) cố định chứa a.

– Tìm mp (Q) cố định chứa b.

– Tìm c = (P) ∩ (Q). Ta có M thuộc c.

– Giới hạn.

BÀI TOÁN 6: Dựng thiết diện của mp(P) và một khối đa diện T.

* Phương pháp:

Muốn tìm thiết diện của mp(P) và khối đa diện T, ta đi tìm đoạn giao tuyến của mp(P) với các mặt của T. Để tìm giao tuyến của (P) với các mặt của T, ta thực hiện theo các bước:

1. Từ các điểm chung có sẵn, xác định giao tuyến đầu tiên của (P) với một mặt của T.

2. Kéo dài giao tuyến đã có, tìm giao điểm với các cạnh của mặt này từ đó làm tương tự ta tìm được các giao tuyến còn lại, cho tới khi các đoạn giao tuyến khép kín ta sẽ có thiết diện cần dựng.

BÀI TOÁN 7: Chứng minh một đường thẳng a đi qua 1 điểm cố định.

* Phương pháp:

Ta chứng minh: a = (P) ∩ (Q) trong đó (P) là một mặt phẳng cố định và (Q) di động quanh một đường thẳng b cố định. Khi đó a đi qua: I = (P) ∩ b.

BÀI TOÁN 8: Chứng minh 2 đường thẳng a, b song song.

* Phương pháp:

  • Cách 1: Ta chứng minh: a , b đồng phẳng rồi áp dụng các phương pháp chứng minh // trong hình học phẳng như: Ta lét, đường trung bình, … để chứng minh: a // b.
  • Cách 2: Chứng minh: a, b cùng // với một đường thẳng thứ ba c.
  • Cách 3: Áp dụng định lý về giao tuyến: Nếu hai mặt phẳng cắt nhau và lần lượt chứa hai đường thẳng song song cho trước thì giao tuyến của chúng cùng phương với 2 đường thẳng ấy.

BÀI TOÁN 9: Tìm góc giữa 2 đường thẳng chéo nhau a, b.

* Phương pháp:

  • Lấy một điểm O tùy ý.
  • Qua O dựng c // a, d // b.
  • Góc nhọn tạo bởi c và d là góc giữa 2 đường thẳng a, b.

* Chú ý: Ta nên chọn O thuộc a hoặc b khi đó ta chỉ cần vẽ một đường thẳng // với đường còn lại.

Tìm kiếm Google:

  • 5 cách giải toán hình học không gian nhanh nhất

Bạn đang xem bài viết Bí quyết giải Toán hình học không gian.
Bài viết được tổng hợp bởi website https://dethithuvn.com

Để có đầy đủ, chi tiết và đúng định dạng, bạn vui lòng tải về để xem. Đừng quên theo dõi Đề Thi Thử Việt Nam trên Facebook để nhanh chóng nhận được thông tin mới nhất hàng ngày.

Chia sẻ

Đánh giá của bạn